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Abstract—This paper presents an innovative, minimally in-
vasive, battery-free, wireless, peripheral nervous system (PNS)
neural interface, which seamlessly integrates a millimeter-scale,
fascicle-selective integrated circuit (IC) with extraneural record-
ing and stimulating channels. The system also incorporates
a wearable interrogator equipped with integrated machine-
learning capabilities. This PNS interface is specifically tailored
for adaptive neuromodulation therapy, targeting individuals with
paralysis, amputation, or chronic medical conditions. By em-
ploying a neural pathway classifier and temporal interference
stimulation, the proposed interface achieves precise deep fascicle
selectivity for recording and stimulation without the need for
nerve penetration or compression. Ultrasonic energy harvesters
facilitate wireless power harvesting and data reception, enhancing
the usability of the system. Key circuit performance metrics
encompass a 2.2 µVrms input-referred noise, 14-bit ENOB, and
a 173 dB Schreier figure of merit (FOM) for the neural analog-
to-digital converter (ADC). Additionally, the ultra-low-power
radio-frequency (RF) transmitter boasts a remarkable 1.38 pJ/bit
energy efficiency. In vivo experiments conducted on rat sciatic
nerves provide compelling evidence of the interface’s ability to
selectively stimulate and record neural fascicles. The proposed
PNS neural interface offers alternative treatment options for di-
agnosing and treating neurological disorders, as well as restoring
or repairing neural functions, improving the quality of life for
patients with neurological and sensory deficits.

Index Terms—peripheral nervous system, neural inter-
face, battery-free, wireless, adaptive neuromodulation, fascicle-
selective, wearable interrogator, machine learning, in vivo, circuit
performance, ultra-low-power RF transmitter, neural ADC.

I. INTRODUCTION

The peripheral nervous system (PNS) plays a critical role
in our body’s overall function, working in tandem with the
central nervous system (CNS). The PNS serves as a com-
munication channel between organs and the CNS, as shown
in Fig. 1(a) [1]. PNS neural interfaces have been employed
to restore motor or sensory functions in individuals with
paralysis or amputation and as implantable therapeutic devices
for treating chronic medical conditions related to autoimmune
or metabolic disorders. However, their efficacy and clinical use
scope is limited due to the invasiveness of the cable, electron-
ics, and battery and the lack of nerve fascicle selectivity and
online adaptivity [2].
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Fig. 1. (a) Illustration of a connection between the central nervous system
and the peripheral nervous system, (b) Cross-sectional representation of a
peripheral nerve, showcasing its internal structure.

Figure 1(b) depicts the cross-section of a typical nerve.
Within the nerve trunk, fascicles containing bundles of axons
serve as conduits for neural action potentials or electrical
signals. Fascicles undergo a continuous process of division
and branching, with each fascicle containing axons directed
towards multiple targets. Consequently, an interface specif-
ically designed for individual fascicles can offer superior
functional selectivity compared to a whole-nerve interface due
to this inherent anatomical complexity. Therefore, fascicles are
frequently the primary targets for recording and stimulation
in PNS interfaces. Nerves are complex neural structures, for
example, the vagus nerve houses approximately 104 axons
in mice and an order of magnitude higher in humans [3].
This nerve connects to several vital organs, necessitating
selective recording to distinguish neural pathways related to
specific organ functionalities. Selective nerve stimulation is
also essential to avoid triggering undesired neural activity in
unintended pathways.

PNS stimulation has emerged as a promising approach for
the treatment of various conditions, including neurological
disorder treatment [4], as well as restoring motor/sensor func-
tions [5]. Notably, peripheral nerve stimulation has been found
effective in the treatment of epilepsy [6], the management of
chronic migraine [7], and chronic pain treatment [8].

For instance, in the context of neural disorder treatment,
vagus nerve stimulators have been developed as a treatment
for drug-resistant epilepsy [6]. These devices periodically
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stimulate the vagus nerve using electrical stimuli, which in
turn affects the brain and results in suppressing seizures.
Despite their potential, these devices face limitations in terms
of efficacy and may cause increased side effects for the
patient. This is because the entire vagus nerve is stimulated,
affecting all connected brain regions, rather than only affecting
the specific brain location involved in causing seizures. One
approach to address this issue is to enhance stimulation
selectivity by targeting specific fascicles within the nerve trunk
that exclusively interact with the focal seizures location in the
brain.

In another example, in cases of restoring motor/sensor
functions [9]–[11] where patients experience motor impair-
ments due to conditions such as amputations or spinal cord
injury (SCI), the motor intentions persist within the motor
cortex. In the context of amputations, a PNS neural interface
is instrumental in recording from the PNS to decode motor
intentions, and in stimulating the PNS to elicit sensations
in the user. This is noteworthy as both functionalities occur
above the level of the amputation. Conversely, in SCI, the
PNS neural interface is utilized differently. It can stimulate
the PNS to evoke movement and can record from the PNS
to extract sensory information, which subsequently serves as
a feedback signal for the closed-loop control of stimulation.
These functions are happening below the level of the lesion.

The aforementioned two examples show that selective
recording and stimulation of peripheral nerves are essential for
the advancement of implantable PNS-interfacing bioelectronic
therapeutic devices as needed to improve neural disorder
treatment efficacy. However, existing PNS neural interfaces
require nerve penetration to achieve selectivity, such as in-
traneural [12] and regenerative [6], [13] interfaces, with such
nerve invasiveness posing significant challenges to their long-
term stability and potential harm to nerves. Ideally, PNS
neural interfaces should be extraneural while still achieving
high levels of selective stimulation and recording (i.e., the
extraneural recording/stimulation is favored over intraneural
and regenerative approach).

To address these challenges, we present a battery-free wire-
less PNS interface that features a mm-scale fascicle-selective
neural interface IC with extraneural recorders and stimulators,
as well as a wearable interrogator with integrated machine
learning (ML) to enable adaptive neuromodulation therapy
with low invasiveness. The proposed PNS interface is designed
to facilitate fascicle selectivity in both recording and stimula-
tion without penetrating or compressing the nerve, utilizing
ultrasonic energy harvesting for wireless power delivery. This
paper expands upon our initial brief report in [2]. In this paper,
we expand on it and offer a comprehensive discussion of
the biomedical facets of our work. This includes an analysis
of (1) the architecture of the PNS neural interface, (2) the
design methodologies and experimental validation for wireless
data communication and power supply, (3) the realization
and verification of fascicle-selective stimulation, and (4) the
development and evaluation of machine learning algorithms
that facilitate selective neural recording for the differentiation
of various neural pathways. Figure 2 provides a summary
of existing and the proposed PNS neural interfaces (top),

alongside the advantages and disadvantages associated with
each interface (middle) and the stimulation methods (bottom)
employed for each.

The system’s key performance metrics include a neural
analog-to-digital converter (ADC) with a 2.2µVrms input-
referred noise, 14-bit effective number of bits (ENOB), and a
173 dB Schreier figure of merit (FOM), as well as 1.38 pJ/bit
energy efficiency for the ultra-low-power radio frequency (RF)
transmitter. In vivo experiments on the rat sciatic nerve further
highlight the interface’s selective recording and stimulation
capabilities on neural fascicles. The proposed system holds
significant potential for various applications, including but not
limited to the treatment of drug-resistant epilepsy and the
restoration of sensorimotor functions.

This paper is organized to provide a comprehensive and co-
herent understanding of the proposed PNS neural interface, its
development process, and potential applications. The structure
of the paper is as follows. Section II delves into the back-
ground of existing PNS neural interfaces, offering an in-depth
analysis of their strengths and weaknesses. In Section III, we
discuss the architecture of the proposed PNS neural interface,
exploring its essential components. Section IV focuses on the
individual circuit blocks that constitute the system, offering a
detailed examination of their design methods, functionalities,
and contributions to the overall objectives of the proposed
PNS neural interface. In Section V, we report the results
of in vivo experiments performed to evaluate the efficacy
of the proposed PNS neural interface. Section VI presents
a comparative analysis, positioning the proposed PNS neural
interface in the context of existing solutions within the field.
Finally, Section VII concludes the paper.

II. PNS NEURAL INTERFACES

The preceding discussion highlights the function of the
PNS and the importance of performing selective recording
and stimulation of peripheral nerves. This section introduces
performance metrics to evaluate the effectiveness and usabil-
ity of PNS neural interfaces and presents case studies of
conventional passive PNS neural interfaces and the emerging
active PNS neural interfaces, discussing their respective ad-
vantages and disadvantages. Lastly, our proposed PNS neural
interface is presented, which addresses various requirements
and challenges associated with existing PNS neural interfaces.
To comprehensively evaluate a PNS neural interface, the
following performance metrics shall be considered, and are
also listed in Fig. 2(left).

Active or Passive: This parameter refers to the placement
of recording channels in proximity to the recording site,
which influences the signal-to-noise ratio (SNR) of the neural
interface. Passive interfaces transmit raw electrical signals
from the nerve to a distant recording/stimulation instrument
via cable, with the SNR being dependent on factors such as
cable impedance, and other variables such as electromagnetic
interference (EMI) from external sources (described in detail
later in this list) and cross-talk between adjacent channels. In
contrast, active neural interfaces digitize neural signals at the
recording site and transmit only the digitized data, rendering
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Fig. 2. Comparative analysis of peripheral nerve electrical interfaces. (a-d) Interface with a peripheral nerve trunk by means of: (a) passive tripolar cuff
electrode, (b) passive high-density cuff electrode, (c) inductively powered rigid flat CMOS-die active electrode, and (d) ultrasound-powered rigid-flex active
electrode. (e-h) Simulated nerve recruitment for: (e) passive tripolar cuff electrode, (f) passive high-density cuff electrode, (g) rigid flat CMOS die active
electrode, and (h) rigid-flex active electrode.

the SNR reliant solely on the quality of the recording channel
and substantially reducing the impact of factors that degrade
SNR in passive interfaces.

Invasiveness: The level of invasiveness in a neural interface
directly influences the likelihood of complications, the degree
of patient discomfort, and the stability of the interface over an
extended period. Solutions that minimize invasiveness, such as
those eliminating wires and the implant “can”, are generally
favored in order to reduce the associated risks and improve
patient outcomes.

Battery Replacement: The requirement for battery replace-
ment surgeries may constrain the long term usability of a
neural interface. A system featuring extended battery life or
alternative power sources is considered more advantageous, as
it reduces the need for additional surgical interventions.

Cable Failure: Dependence on cables can present potential
failure points within the system. Implementing cable-free
or wireless alternatives can mitigate this concern, thereby
enhancing the overall reliability and robustness of the system.

Electromagnetic Interference (EMI): EMI on cables can
compromise the quality of recorded neural signals and disrupt
stimulation. A well-designed interface ought to minimize
EMI to guarantee accurate and reliable data acquisition and
stimulation.

Nerve Damage Risk: Minimizing nerve damage risk
through extraneural implantation approaches is preferable to
ensure safety and long-term efficacy. A carefully designed
neural interface should be capable of recording high-quality
action potentials in axons from the surface of the nerve trunk
without penetrating or compressing the nerve trunk.

Recovery Period: Reduced recovery periods subsequent to

surgical procedures serve to alleviate patient discomfort and
minimize interruptions to their daily routines. As such, it is
essential that the interface be designed with a compact form
factor, ideally resulting in minimal open wounds during the
implantation process.

Recording Selectivity: Enhanced recording selectivity fa-
cilitates the interface’s ability to discriminate between various
neural fascicle and pathways, thus enabling the acquisition of
more precise and comprehensive information.

Stimulation Selectivity: An interface with high stimulation
selectivity is crucial for delivering precise stimuli to the
specific target fascicle without affecting other fascicles. This
accuracy ensures that only the desired neural pathways are
activated, enhancing the overall effectiveness of the therapeutic
intervention.

The aforementioned requirements constitute the main chal-
lenges and considerations for PNS interfaces, and a successful
design should tackle these concerns. Furthermore, depend-
ing on the specific application, additional requirements may
arise. An effective neural interface must accommodate the
primary requirements and application-specific demands. In
certain cases, trade-offs may exist between these requirements,
necessitating the achievement of a balance to optimize overall
performance and functionality for the interface.

A. Conventional passive PNS interfaces

Figure 2(a) illustrates conventional passive PNS interfaces
with the tripolar cuff recording electrode configuration [14],
[15]. The ring contact of the electrode wraps around the entire
nerve trunk, recording action potentials from all fascicles.
For neuro-stimulation, two ring contacts of a bipolar (or
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tripolar) cuff electrode deliver electrical stimuli, activating
all fascicles (highlighted in green) surrounded by the ring
contact, as depicted in Fig. 2(e). This configuration suffers
from poor fascicle selectivity, affecting the overall recording
and stimulation spatial resolution and efficacy. Additionally,
it exhibits a suboptimal performance matrix due to using
passive electrodes and the high invasiveness arising from long
cables. Electromagnetic interference and cable interference can
significantly diminish recording and stimulation performance.
The recovery period following implantation may be extended
due to the invasiveness of the surgery, as the form factor of the
passive electrode along with the cables and the “can” could
be quite large. However, it offers some advantages, such as
causing minimal nerve damage, as it wraps around the nerve
without nerve trunk penetration or compression.

Figure 2(b) presents a passive high-density flexible nerve
cuff electrode, which offers improved selectivity compared to
the tripolar cuff electrode discussed earlier [16]. The use of
high-density fine grid contacts for recording facilitates selec-
tive recording, as each contact is more likely to record neural
activity in its vicinity. Figure 2(f) depicts a basic stimulation
configuration utilizing a passive high-density flexible nerve
cuff electrode, wherein two pairs of electrodes are chosen to
deliver biphasic current pulses to the nerve. In this instance, the
superficial fascicles (highlighted in green) in proximity to the
active stimulation contacts are activated, resulting in enhanced
selectivity compared to the tripolar cuff electrode that activates
all fascicles near the ring contact. Despite these advancements
in selectivity, these interfaces exhibit similar drawbacks as
tripolar cuff electrodes, such as high invasiveness, a need
for battery replacement, and an extended recovery period.
They also remain susceptible to electromagnetic interference
and stimulation crosstalk, which can undermine the quality
and reliability of PNS neural interfaces. These interfaces
typically engage superficial nerve fibers, further limiting their
application scope. Similarly to the tripolar cuff electrode
configuration, they do not inflict substantial nerve damage,
as they envelop the nerve without penetration or compression.

B. Active PNS interfaces

Figure 2(c) depicts the active probe configuration for PNS
neural interfaces, as proposed in [17] and [18]. That design
involves flip-chip bonding an integrated circuit to a FINE-
style [19] electrode cuff, positioning the electrode contacts
on two opposite sides of the nerve. The direct attachment
of the chip to the nerve substantially improves the signal-
to-noise ratio (SNR) of the active probe, resulting in en-
hanced neural recording accuracy. Figure 2(g) illustrates the
selective stimulation capabilities of this active probe, wherein
intersectional short pulses [20] are applied to opposite-side
contact pairs to build up the average charge density in localized
regions within the nerve trunk while maintaining a low charge
density elsewhere. In this simplified example, two biphasic
current sources are activated sequentially, delivering charges
that individually are below the nerve’s recruitment threshold at
the surface. The additive total current in the middle facilitates a
charge build-up that exceeds the recruitment threshold of the

fascicle (highlighted in green) near the center of the nerve.
Furthermore, the wireless functionality of this active probe
reduces invasiveness by obviating the need for cables and
mitigating related complications, such as cable replacement
and electromagnetic interference. A key feature of this ac-
tive probe is its ability to access deeper fascicles via nerve
compression, which enables selective deep-fascicle recording
through nerve reshaping. Nonetheless, such deformation is
inadvisable for critical nerves, such as the vagus nerve, as
compression can result in prolonged nerve recovery time and
may cause permanent nerve damage if excessive.

Figure 2(d) presents the proposed PNS interface designed
to attain deep fascicle selectivity without the need for nerve
penetration or compression. The proposed design incorporates
the chip onto the rigid section of a flexible-rigid electrode
array substrate. The flexible electrode array conforms to the
nerve’s shape, effectively wrapping around it to minimize the
risk of nerve damage. By situating the recording system in
close proximity to the recording site, the signal-to-noise ratio
is enhanced, and the effects of electromagnetic interference
are mitigated, ultimately improving the overall performance of
the interface. A distinguishing feature of this device is its fully
wireless operation, enabled by ultrasonic power transmission.
This approach permits deeper implantation of the device, elim-
inates the need for cumbersome battery cables, and reduces
the invasiveness of the implantation procedure. Additionally,
the proposed design employs a convolutional neural network
(CNN) neural pathway classifier (discussed in section IV.D)
as well as the temporal interference stimulation paradigm,
as shown in Figure 2(h) and elaborated upon in Section
IV.B. While the concept of temporal interference stimulation
has been previously explored for brain interfaces [21], its
application to peripheral nerves is an innovative aspect of
our work. For finer-scale selective stimulation on the targeted
nerve, our approach is visualized in green in Figure 2(h).

In summary, our proposed battery-free wireless PNS inter-
face was designed to address these challenges head-on. The
key novelties and improvements over conventional interfaces
include: (1) battery-free operation - by leveraging ultrasonic
power transfer, our design eliminates the need for battery
replacements, thus reducing the invasiveness and potential
for complications, (2) wireless connectivity - The absence of
cables in our system minimizes potential failure points, thereby
boosting the system’s reliability, (3) minimized EMI - Without
cables, our system experiences minimal EMI, ensuring the
integrity of recorded neural signals, (4) safety-centric Design
- Our neural interface prioritizes nerve safety, focusing on
high-quality recordings without nerve damage, (5) compact
design - Our system’s compact form factor facilitates a reduced
recovery period for patients.

III. SYSTEM-LEVEL ARCHITECTURE

Previously, we introduced the various requirements for
PNS neural interfaces. This section presents the system-level
architecture of the proposed design of our fascicle-selective
peripheral nerve interface.

Figure 3(a) depicts the system-level block diagram of the
proposed IC, comprising: (1) an array of 64 neural analog-
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Fig. 3. Block diagram of the presented: (a) PNS neural interface integrated
circuit architecture, and (b) its wearable interrogator.

to-digital converters (ADCs) designed for high-density neural
activity monitoring and responsible for amplifying and digi-
tizing peripheral nerve signals for subsequent processing; (2)
an array of 64 8-bit current-mode neuro-stimulators tailored
for temporally interfering focal stimulation; (3) a wireless
data transmitter (TX) and a clock generator, facilitating the
uploading of recorded data to the wearable interrogator and
generating on-chip clock signals, respectively; (4) a wireless
power management unit (PMU) and a data receiver (RX) for
harvesting ultrasound power and receiving commands from
the wearable interrogator, respectively; and (5) a RISC-V
processor included for optional on-chip data handling and
processing. The entire system’s nominal power consumption
amounts to only 480 µW.

Figure 3(b) illustrates the interrogator components: (1) a
decimation filter employed for neural data pre-processing,
responsible for filtering high-frequency quantization noise;‘ (2)
a channel scanner for extracting temporal and spatial features
essential for classification; (3) a convolutional neural network
(CNN) dedicated to real-time neural pathway classification,
determining rodent’s limb movement types based on the pre-
viously extracted features; (4) a finite-state machine (FSM)
generating commands for chip control; and (5) power and
command TX components designed to send ultrasound power
and data transmission to the chip, respectively.

The closed-loop operation of the proposed PNS neural
interface comprises several sequential steps. First, the raw
neural signals recorded and digitized by the neural ADC are
transmitted to the interrogator through a data uplink. The
low power consumption of the transmitter allows it to send
all data to the off-chip interrogator for analysis, consuming
significantly less power than employing an on-chip digital
classifier [22] or other advanced-technology analog hardware
accelerators [23], [24].

Second, the interrogator carries out digital signal processing
and identifies distinct neural pathways using a convolutional
neural network-based (CNN) classifier. Based on the classifi-
cation results, commands are then transmitted to the stimulator

via a data downlink. This process facilitates the delivery
of electrical stimuli to the subject according to the specific
requirements dictated by the information obtained from the
identified neural pathways.

Our proposed PNS neural interface is designed to operate
in a closed-loop manner, aiming to continually optimize and
adapt electronic neuromodulation therapies to cater to the
unique physiological responses of each patient. The closed-
loop system achieves this by actively monitoring neural
signals and adjusting stimulation parameters in real-time.
This dynamic approach promises to elevate the treatment’s
overall effectiveness by ensuring more targeted and efficient
neuromodulation, thereby offering potential advancements in
managing various neurological conditions.

IV. CLOSED-LOOP FUNCTIONAL BLOCKS

In the preceding section, our emphasis was placed on eluci-
dating the design considerations and methodologies pertaining
to the system architecture. In this section, we concentrate
on examining the circuit-level design, offering an in-depth
analysis of the design strategies and considerations for each
functional block present in both the implantable integrated
circuit (IC) and wearable interrogator.

A. Neural ADC

Conventionally, neural amplifiers use either the bipolar (as
shown in Fig. 4(a)) or the more popular unipolar (as shown
in Fig. 4(b)) recording configuration, which typically suffer
from a high number of electrodes or from imbalanced input
impedance significantly degrading the common-mode rejec-
tion ratio (CMRR), respectively. To maintain the minimum
number of electrodes and a moderate PNS-suitable CMRR,
we introduce a pseudo-differential configuration with matched
input impedance by using an additional preamplifier for the
reference input (as shown in Figs. 4(c,d)).

Each preamplifier is a switched-capacitor correlated-double-
sampling amplifier (CDSA) that reduces low-frequency noise
and offset, as shown in Fig. 4(e). A source-follower buffers the
CDSA’s input and sets the low-pass frequency corner. A self-
biased near the cut-off region, the inverter amplifier replaces
a conventional OTA to reduce static power consumption. A
1st-order noise-shaping (NS) SAR ADC with such an inverter-
based integrator samples the pre-amplified neural signal and
reference differentially to enable common-mode rejection,
as depicted in Fig. 4(d). The oversampling NS SAR ADC
provides significantly higher SNDR than the Nyquist rate ADC
or the non-uniform sampling ADC [25].

Figure 4(f) shows the capacitor sizes and the clock phases
for the switches used in the proposed analog front-end. During
phase Φ1, the two CDSAs amplify the potential difference
between the neural signal and the reference, which is then
buffered on the ADC’s sampling capacitors; during phase Φ2,
the CDSAs sample the dynamic offset and the low-frequency
noise, while the ADC converts the sampled signal through
Φ1 to a digital code using asynchronous SAR logic. Dynamic
element matching (DEM) is employed to reduce the impact
of the mismatch in the capacitor bank. The front-end achieves
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Fig. 4. Electrode connection configurations: (a) bipolar differential; (b) unipo-
lar differential; and (c) unipolar pseudo-differential. The presented unipolar
pseudo-differential analog front-end implementation: (d) noise-shaping SAR
ADC schematic; (e) correlated-double-sampling amplifier (CDSA) schematic;
and (f) clock phases for switches used in the presented analog front-end.

an input-referred noise of 2.2 µVrms over a 2.5 kHz band
with noise efficiency factors (NEFs) of 2.55 and 3.93, without
and with the ADC power included, respectively. The ADC
achieves an effective number of bits (ENOB) of 14 bits and
a Schreier figure of merit (FOM) of 173dB. The choice of
the 14-bit resolution was made to balance the need for high
SNDR and high power efficiency. The total area of the AFE
is 0.02mm2.

B. Multi-channel I-DAC for temporal interference neuro-
Stimulation

Inspired by the recently discovered temporal interference
stimulation (TIS) method for deep brain stimulation [21], our
proposed approach applies TIS to peripheral nerves. To the
best of our knowledge, this is the first work that utilizes the
TIS method for focused stimulation of peripheral nerves.

The operating principle of TIS is illustrated in Figure 5(a),
which demonstrates the delivery of a temporally interfering
electric field deep within a nerve without the need for nerve
penetration or compression. In this cross-sectional view of a
nerve, two pairs of stimulation electrodes from a high-density
cuff electrode array are used. Two differential high-frequency

current stimulation signals, within the kHz frequency range
and with a small frequency difference of ∆f , are applied to
two selected pairs of electrodes in the cuff electrode array. This
results in generating two electric fields, E1 and E2, highlighted
in red and blue, respectively. The interference between these
fields creates an intermodulation field, with ∆f emerging as
the frequency of the resulting interference envelope.

Since nerves are responsive in a low-frequency band where
∆f resides, one can activate the desired deep fascicles without
affecting most other fascicles in the nerve. By adjusting the
stimulating signal parameters to generate fields interference
at different location of cross section of the nerve, it becomes
possible to selectively target deep fascicles.

Figure 5(b) presents a circuit-based analysis method to
illustrate the TIS principle. The electrode and tissue interface
is modeled using a lumped components model, ZIN, which
consists of a resistor in parallel with a capacitor and a series
resistor. The fascicle situated in the middle of the nerve is
modeled by a resistor, highlighted in green. Two differential
current sources are connected to two pairs of electrodes at the
nerve’s surface, where the red current source has a frequency
of fc, and the blue current source has a frequency of fc+∆f .

Utilizing the superposition method for circuit analysis, the
current flowing through the green resistor is evaluated for each
current source. The total current (the green waveform) is the
sum of the red and blue currents, resulting in a modulation
envelope of the low-frequency ∆f (the purple waveform),
also known as the beat frequency. In this example, the beat
frequency is largest in the center region of the nerve and
diminishes elsewhere. By altering the strength of each current
source and the choice of stimulation electrode pairs, selective
targeting of different fascicles within the nerve bundle can be
achieved.

Figure 5(c) displays a color map generated from a finite-
element simulation demonstrating the electric field distribution
within a nerve model and the selective stimulation capability of
the TIS method. From the left to the right in Fig. 5(c), The top
left, bottom left, center, bottom right, and top right fascicles are
stimulated, respectively. Specific nerve regions can be targeted
to achieve fields above the desired recruitment threshold by
selecting the appropriate electrode pairs to stimulate along the
high-density cuff electrode array.

Overall, our proposed TIS-based approach for peripheral
nerve stimulation offers several advantages, including elim-
inating the need for a high-voltage CMOS process [2] or
the requirement for utilizing smaller electrodes, such as
nerve-penetrating electrodes. Figure 6 presents a simplified
schematic of the stimulator, which features a dual wide-swing
current source architecture. This structure is designed to both
push and pull current to/from the electrode, improving the
output impedance of the current source. In order to attain
an 8-bit resolution, we control the gate voltage of PMOS
and NMOS transistors—sized in binary fashion—using 8
control bits. This approach enables selective activation or
deactivation of the 8 binary-weighted current sources. More-
over, this method achieves deep nerve stimulation without
compressing or penetrating the nerve, thereby reducing the
risk of nerve damage. By providing an extraneural focused
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Fig. 5. Temporal interference stimulation (TIS) for peripheral nerves: (a) operating principle using a high-density cuff electrode array; (b) circuit analysis of
TIS with lumped component models, and (c) finite-element numerical simulation demonstrating selective stimulation capability.

Fig. 6. Schematic of the proposed current neural stimulator.

stimulation method for peripheral nerves, this approach can
potentially improve therapeutic outcomes, patient comfort, and
overall safety. As neural interfaces evolve, integrating TIS into
peripheral nerve stimulation systems represents a promising
direction for advancing the field, fostering an improved un-
derstanding of neural function, and enhancing the development
of targeted treatments for various neurological disorders. The
neurostimulator is designed with a compliance voltage of
3.3V. The neurostimulator operates at a frequency of 2kHz,
and considering the reduction in electrode impedance over
frequency, the maximum deliverable peak-to-peak current is
around 3mA. It is important to note that the current specifi-
cations are tailored for rat experiments and are not optimized
for human applications.

C. Edge-combining data uplink transmitter

In preceding sections, we examined the analog front-end
architectures and the neuro-stimulation method, both essential
for nerve interfacing. In this subsection, we will shift our focus
to the data transmission component of the system, placing

particular emphasis on our proposed design strategies and
methods for the transmitter (TX) that are specifically tailored
to accommodate the diverse requirements of neural implants
and, more generally, of various other biomedical implantable
devices.

1) Motivation: A significant challenge associated with the
PNS neural interface involves enabling wireless multi-channel
data transmission while maintaining ultra-low power consump-
tion and small area usage and adhering to the preferable sub-
GHz frequencies for low tissue attenuation.

The choice of the local oscillator (LO) is of paramount
importance due to its substantial impact on the overall
power budget for ultra-low-power (ULP) TXs. While inductor-
capacitor voltage-controlled oscillator (LC-VCOs) are the
standard power-efficient means of frequency synthesis, their
large-area requirements at sub-GHz frequencies impede minia-
turization. Conversely, ring oscillators (ROs) can achieve the
minimum dimensions and a desirable large tuning range,
but they consume power excessive for implant micro-power
budgets.

To address the power consumption drawbacks of ROs, we
propose a current-mode edge-combining (EC) technique aimed
at attaining ULP for event-based TXs in micro-implants: a
frequency-multiplying switching-current-ripple (FMIR) tech-
nique. This technique enables the synthesis of high-frequency
carriers from slower, lower-power ROs through in-ring opera-
tion with minimal circuit overhead. The measurement results
demonstrate the effectiveness of the RO EC technique, which
can provide a sufficient carrier frequency for multi-channel
data rates and direct-modulation architectures to enable duty-
cycled power on-off keying (OOK).

2) VLSI implementation: Figure 7(a) presents the
frequency-multiplying current-ripple data transmitter (TX),
utilizing a voltage-controlled oscillator power amplifier
(VCO-PA) current re-use stacked TX solution. The design
comprises three main components: (1) an edge-combining ring
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Fig. 7. (a) Schematic representation of the frequency-multiplying current-
ripple data transmitter (TX) utilizing a VCO-PA current re-use stacked TX
solution, consisting of an edge-combining ring oscillator (RO), a power
modulator for OOK data modulation, and a stacked current-reusing common-
gate regulating power amplifier. (b) Illustration of the inverter chain switching
dynamics, depicting the output voltage waveform at each inverter stage and the
associated supply current spikes, that are used to time the data transmission
at a higher frequency (Nf ) than that of the VCO (f ).

oscillator (RO) that serves as the core frequency generator;
(2) a power modulator for OOK data modulation, which
alternates the power amplifier and oscillator on and off; and
(3) a stacked current-reused common-gate regulating power
amplifier, responsible for amplifying the modulated data and
setting the control voltage for the ring oscillator.

As illustrated in Fig. 7 (b, bottom), upon switching at a
frequency of f , each inverter in the chain alternates between
VDD and ground at f , charging and discharging its output
load capacitance. This process results in considerably large
supply current spikes at f , as shown in Fig. 7 (b, middle).

The inherent characteristics of the power-supply current in
an inverter chain are exploited to reduce power consumption.
The sequential switching of each inverter stage produces a
train of equally spaced current spikes. When combined within
a single period of the ring oscillator, these current spikes
generate a high-frequency switching harmonic with an integer
value equal to the number of stages, N. Consequently, the RO
supply current IA spikes are at a frequency fA = f × N ,
which is N times higher than the RO oscillation frequency.
Finally, the RO supply current IA flows into the LC load
through a power amplifier, producing an N times higher-
frequency voltage signal (as shown in Fig. 7 (b, top)) with
an N -stage slower-operating ring oscillators, leading to the
corresponding power savings. This design strategy enhances
the overall efficiency and performance of the transmitter while
maintaining its compact and low-power characteristics.

The generation of supply ripple-current is a fundamental
aspect of edge-combining ring oscillator’s operation. How-
ever, implementing these oscillators exclusively with CMOS
transistors, sized to meet stage delay and ring frequency re-
quirements, results in nonideal current waveforms that deviate
from the simple model previously discussed. Device parasitic
capacitances give rise to various phenomena and transient
current profiles that differ from the anticipated train of sharp
transient current spikes. Still, an LC-free, transistor-only ring

oscillator (RO) implementation leads to minimal area usage,
which can be advantageous in certain use cases.

Equation 1 shows a straightforward metric employed to
assess the ring’s efficiency in generating ripple currents.

ηripple =
IApeak

IDC
(1)

where IApeak is the peak amplitude of IA, and IDC is the
power supply DC current flow through the ring oscillator.

The ripple-current-efficiency can be utilized for frequency
synthesis purposes, such as minimizing ηripple supply ripple
for low-noise applications or maximizing ηripple supply ripple
for higher output power.

In our design, we aim to maximize ηripple since phase noise
does not significantly impact the bit error rate due to the use
of OOK modulation. The most critical device parasitic factor
impairing our ηripple is the gate-to-drain parasitic capacitances
of each inverter. Upon sharp switching at the input, these ca-
pacitances conduct input charge into the output node, resulting
in an instantaneous sharp voltage step at the output with the
same phase as the input signal. Consequently, this diminishes
ripple spikes of adjacent RO stages and reduces the overall
ηripple.

One approach to mitigate this issue involves reducing tran-
sistor sizes, thereby lowering the parasitic capacitance (Cgd)
of devices and employing dedicated load capacitances at each
output node to reduce the core oscillating frequency. This
approach introduces a trade-off between area and efficiency.

An additional technique for maximizing ηripple is based on
inverter skewing. By enlarging the widths of PMOS transistors
used in the inverter, their corresponding Ron and the inverter
rise times decrease. As a result, peak currents charging load
capacitances increase upon falling-edge switching. However,
beyond a specific point, static leakage current becomes sig-
nificant, further reducing ηripple. Therefore, when designing
the proposed current-mode edge-combining ring oscillator, the
transistor size choices were based on the aforementioned trade-
offs.

For the FMIR-TX, OOK modulation is achieved using a
simple power modulator in the power amplifier (PA) bias path.
This modulator toggles the PA (M1) on and off, controlling
the current flow into the oscillator and thus activating or
deactivating the oscillator.

In the context of FMIR current-output modulation onto the
supply, the PA transistor M1 is required to fulfill two essential
functions. Firstly, it must provide trans-impedance gain in the
signal path, which facilitates the transduction of IA to VOUT.
Secondly, it must achieve a certain level of load regulation to
establish the control voltage, VCTRL, enabling the oscillator
to attain the desired oscillating frequency. These objectives
must be met while preserving a low input impedance so as to
absorb the majority of the IA current emanating from the ring
oscillator (RO). The minimization of RIN for M1 and stage
trans-impedance gain can be realized by maximizing gm1.

An inherent negative feedback loop is present within the
system structure, providing the necessary regulation by estab-
lishing VCTRL. The feedback loop can be analyzed as follows.
When substantial switching currents are present, the VCTRL
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value decreases, which subsequently leads to an increase in
Vgs for M1. As a result, a higher supply current is pumped into
the ring oscillator, causing the VCTRL value to increase and,
in turn, leading to a decrease in Vgs for M1. This phenomenon
can be alternatively understood as a reduction in the regulator
path’s resistance, effectively bringing VCTRL closer to the
oscillator’s predetermined set point. This inherent negative
feedback loop allows for stable and efficient regulation of
the system, ensuring optimal performance in various operating
conditions.

3) Testing setup and measurement results: Figure 8
presents the test setup and the key measurement results
for the proposed frequency-multiplying current-ripple data
transmitter (FMIR-TX). The test setup, as illustrated in Fig.
8(a), comprises the pseudo-random binary sequence (PRBS)
generator, FMIR-TX, the TX antenna, the RX antenna, the
matching network for both TX and RX and the power amplifier
for the RX. These components have been carefully selected
and arranged to ensure the accuracy and reliability of the
measurements. A planar inverted-F antenna (PIFA) with a
defected ground is used as the TX element in implant, and
is designed on a low-cost FR4 substrate. The low dielectric
constant of the substrate (εr = 4.5) enables a moderate
efficiency of 55% and a bandwidth of 17 MHz within a
compact size. The antenna is folded to minimize the size for
implantable and wearable applications while a shorted stub
near the feeding point is used to match the antenna. Moreover,
an ultra-wideband antenna (47% of its center frequency) is
designed with circular polarization. This coplanar waveguide
(CPW)-fed slot antenna incorporates two C-shaped slots at
two opposite corners, which is crucial for circular polarization
and makes it suitable for wireless communication. Reflection
(S11) of both of these antennae are measured as shown in
8(d-e), which are in great agreement with the simulation
results obtained from high frequency software HFSS. These
results provide a comprehensive understanding of the antenna
performance and its compatibility with the FMIR-TX.

Figure 8(f) illustrates the spectrum of the pseudo-random
binary sequence on-off keying (PRBS-OOK) modulated sig-
nal, highlighting the FMIR-TX’s ability to produce an accurate
modulated output at a data rate of 20 Mbps. Furthermore,
the continuous wave carrier spectrum received at the RX is
depicted in Fig. 8(g), demonstrating the power available at
the receiver end. These results showcase the effectiveness of
the proposed transmission system in generating and receiving
modulated signals. To address the antenna design procedure
and efficiency in the sub-GHz data link, we conducted a series
of simulations and experiments. The efficiency of the TX an-
tenna was measured at 40% when placed 1mm away from rat
skin with a thickness of 4mm. This efficiency further increased
to 50% when the antenna and the skin were separated by a
distance of 5mm. Additionally, a Specific Absorption Rate
(SAR) analysis was performed. The results shown in Fig.
8(g) demonstrate that the average SAR over 10g of rat skin,
when the antenna is fed by 1W of power, remains well below
the safety standard of 1.6 W/kg. These findings confirm the
suitability and safety of our antenna design for sub-GHz data
transmission in this particular application.

Fig. 8. The testing setup and key experimental measurement results. (a)
FMIR-TX testing setup. (b) The TX antenna used to test the FMIR-TX. (c)
The RX antenna used to test the FMIR-TX. (d) The S11 parameter of the TX.
(e) The S11 parameter of the RX. (f) Measured OOK modulated frequency
spectrum using a PRBS. (g) Measured received carrier spectrum. (h) SAR
Analysis of the TX Antenna.

The measurement results for the data transmitter reveal that
the 5-stage edge-combining TX generates a radio frequency
signal centered at the 915 MHz industrial, scientific, and med-
ical (ISM) band. This frequency is achieved through frequency
multiplication across each ring oscillator stage, utilizing a
base RO operating frequency of only 183 MHz. The on-
off keying modulated spectrum underscores the transmitter’s
performance, achieving a maximum data rate of 20 Mbps
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while maintaining low power consumption at 27.63 µW. The
system exhibits an energy efficiency of 1.38 pJ/bit at the
maximum data rate.

In summary, our system incorporates an energy-efficient,
frequency-multiplying OOK transmitter based on a current-
mode edge-combining principle. Current ripples from each
ring oscillator VCO stage are merged at the source of the
NMOS transistor, which acts as a power amplifier. The pro-
posed design allows for efficient frequency multiplication,
directly contributing to the energy efficiency of the system. For
an N-stage ring oscillator, the VCO frequency is multiplied by
N. This approach not only enables energy-efficient frequency
multiplication but also offers a wide tunable frequency range
due to the inherent characteristics of the ring oscillator VCO.
By leveraging this unique architecture, our system can deliver
the desired performance while maintaining energy efficiency
and adaptability to a wide range of operating conditions.

D. CNN-based neural pathway classifier

1) Motivation: As previously discussed, the selective
recording of peripheral nerves has become increasingly impor-
tant in the advancement of bioelectronic systems. Extraneural
techniques demonstrate the potential to enhance long-term
stability, a crucial aspect for clinical applications. However,
extraneural peripheral nerve recording still presents a signif-
icant challenge due to the low signal-to-noise ratios (SNR)
when compared to their intraneural [12] and regenerative [6],
[13] counterparts.

To tackle this issue, we a utilized convolutional neural
networks (CNN) to associate naturally evoked compound
action potentials (nCAPs) with specific neural pathways, lever-
aging spatiotemporal patterns found in multi-contact nerve cuff
recordings. This algorithm builds on what initially proposed in
[26] and implemented in hardware in [17] [18]. In the present
work, we further optimize the algorithm to reduce the number
of parameters and create a 420x smaller model size without
significantly sacrificing classification accuracy.

The primary objectives of this classifier are twofold: first, to
detect neural activity associated with specific activity classes,
such as different types of limb motion, as demonstrated in
this work, and second, to utilize the classification results
for closed-loop functional electrical stimulation (FES). The
classifier employed in this system distinguishes between three
distinct classes of neural pathways, all related to an animal
model’s hind paw movements: dorsiflexion (hind paw moving
upwards), plantar flexion (hind paw moving downwards), or a
response to a Von Frey monofilament prick on the heel.

2) Inference model architecture: In the given context, the
term ”neural pathway” pertains to a small collection of ax-
ons exhibiting related functions and firing with approximate
synchrony. The neural pathway classifier encompasses the
following primary stages: (1) Preprocessing: At the outset,
the raw recorded signal originating from each electrode is
subjected to filtering and referencing. (2) nCAP detection: The
preprocessed signals are averaged signal to enhance SNR, and
subsequently, nCAPs are detected by applying a thresholding
method to this averaged signal. (3) Spatiotemporal signature

Fig. 9. Illustrations of electrode outputs reorganization (top) and measured
spatiotemporal signature representations (bottom) for the cases of: (a) spatial
emphasis, and (b) temporal emphasis. Each signature consists of 64 electrode
signals (columns) over 100 time-samples (rows), with the electrode outputs
being reordered for the purpose of both spatial (a) and temporal (b) emphasis.

extraction: the spatiotemporal signatures of nCAPs are ex-
tracted from the preprocessed signal, which serve as inputs
for classifier training and evaluation. (4) Training: spatiotem-
poral signatures, once extracted, are subsequently employed to
instruct a CNN model. This is achieved via the utilization of
Tensorflow and Keras libraries, with the optimization process
being conducted through stochastic gradient descent. Further-
more, the loss function used for this purpose is categorical
cross-entropy. The training regimen incorporated 1000 epochs
or terminated earlier if no reduction in the validation loss
function was observed over the span of 15 consecutive epochs.
(5) Classification: Lastly, the classification stage entails the
use of extracted spatiotemporal signatures as its input, which
in turn associates each nCAP with a specific neural pathway.

The preprocessing is done by using the decimation filter
block in the interrogator. Upon identifying nCAPs from the
averaged signal, 49 time samples prior to and 50 time samples
subsequent to the peak of nCAPs’ location were utilized to
establish spatiotemporal signatures. As depicted in Fig. 9,
the channel scanner sequentially organizes the 8 × 8 digi-
tal neural data both longitudinally and transversely, thereby
emphasizing the spatial and temporal features, respectively.
For each activity type (dorsiflexion, plantarflexion, and heel
pricking), the spatiotemporal signatures were assembled using
detected nCAPs associated with each stimulus, encompassing
M contacts (M = 64 in this example) and T consecutive time
samples (T = 100 in this example). This formulation resulted
in an M×T matrix, representing the spatiotemporal signature
for the corresponding nCAP. Next, the two resulting feature
maps are fed into the CNN, which is trained to classify the
three types of activiting.

Figure 10(a) compares three CNN architectures: the original
ESCAPE-NET (green) [26], a network with a dropout layer
(blue), and the reduced network proposed here (yellow). A
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Fig. 10. Performance comparison of three in-the-loop CNN inference engine candidates. (a) Three compared CNN architectures: the original ESCAPE-NET
(green) [26], a network with a dropout layer (blue), and the reduced network proposed here (yellow). (b) Distribution of neurons across various layers in
the three CNN architectures illustrating the reduced neuron count requirements for the proposed network. (c) F1-score performance curves for the three
architectures, highlighting the reduction in the number of filter parameters in the proposed architecture while maintaining comparable performance. This work
(yellow) reduces the number of parameters by a factor of 420x compared to [26] (green) while lowering F1-score by only 0.029.

more detailed analysis can be found in one of our recent works
[27]. Here, we provide a brief illustration of the proposed
network structure and highlight its advantages. The presented
CNN is composed of three primary components: convolutional
layers, pooling layers, and a global pooling layer. A convolu-
tional layer processes the input image utilizing an N×N filter,
which traverses the image with a stride of K. The pooling
layer consolidates adjacent pixels into a single pixel, yielding
an output image with reduced dimensions compared to the
input image. Subsequently, the global pooling layer receives
the output from multiple convolutional and max pooling layers
and generates the classification results. The adopted CNN
architecture encompasses two convolutional layers followed
by a max-pooling layer, three subsequent convolutional layers,
another max-pooling layer, and two additional convolutional
layers. The outputs from this sequence are then channeled
into two further convolutional layers and one global max-
pooling layer. The convolutional layers employ 3 × 3, 3 × 3,
2 × 2 × 3, 2 × 2 × 3, 1 × 1, 4 × 3 × 3, 1 × 1, 1 × 1, and
1×1 filters for the first through the ninth convolutional layers,
respectively, maintaining a stride length of 1 and zero-padding
to preserve the same dimensionality. All max-pooling layers
are based on 2 × 2 groupings, and the concluding global
pooling layer outputs the three classification results. Figure
10(b) demonstrates the large number of neurons of the green
model both in its upper and lower segment, which are directly
proportional to the number of parameters (Fig. 10(c, bottom)).
This contributes to high model complexity.

The number of parameters in a CNN is a crucial factor in

determining the type of device which it can be deployed on,
as there exists a strong dependance between model complexity
and the hardware device’s required computational capabilities,
memory and power resources. As illustrated in Figure 10(c,
green), the green network [26] comprises 2.5×107 parameters,
yielding satisfactory performance with a 0.807 F1-score, as
depicted in Fig. 10(c, green curve). Consequently, the hard-
ware implementation is constrained to larger wearable devices
or stationary devices, which typically possess more compu-
tational resources, memory, and power compared to smaller
wearable devices. Deploying this CNN with such an extensive
number of parameters on a small wearable device may not
be feasible. To accommodate this CNN on a small wearable
device, it is essential to significantly reduce the number of
parameters. This can be achieved through various techniques,
such as network pruning. However, as demonstrated in Fig.
10(c, green curve), reducing the number of parameters used
in this CNN results in a significant drop in performance (to
F1-score below 0.75).

Figure 10(a, blue) depicts an alternative approach to reduce
the dense layer’s neuron count by incorporating a dropout layer
between the two dense layers. The dropout layer randomly
deactivates a fraction of the neurons during training, reducing
the number parameters. During inference, all neurons remain
active, and the dropout rate scales down the layer’s output
to maintain expected activation levels. However, reducing
parameters in this CNN (Fig. 10(c, blue curve)) also correlates
with a decline in performance.

The primary contribution in our proposed CNN architecture
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is to replace the output’s fully connected layer with two
convolutional layers, followed by a global pooling layer.
This reduces parameters while maintaining performance. This
“fully convolutional” technique, common in state-of-the-art
CNN architectures [28], maps input spatial dimensions to the
desired output classes using convolutional layers. The initial
layer captures higher-level features, while the subsequent layer
focuses on mapping these features to the output classes. After
the convolutional layers, a global pooling layer is introduced.
It aggregates feature maps by computing the maximum value
(global max pooling) across each map’s spatial extent. This
yields a single value per map, interpreted as a “confidence
score” for each class. The global pooling layer’s output is a 1D
vector containing confidence scores for all classes (e.g., three
movements). These scores pass through a softmax activation
function to obtain final class probabilities. This proposed
architecture reduces parameters by eliminating the fully con-
nected layer, preserving classification capabilities. Advantages
include a more compact, computationally efficient model,
improved generalization from the global pooling layer’s spatial
invariance, and support for variable input spatial dimensions.

Figure 10(c) demonstrates that the proposed classifier
achieves a significant reduction in the number of filter param-
eters, decreasing them by a factor of 420, while only incurring
a modest decline of 0.029 in the F1-score performance.
Results are based on the dataset provided in [26] for nine
rodents. This outcome emphasizes the classifier’s reduced size
without substantially compromising its overall performance,
establishing it as a vital component within a low-power PNS
neural interface system.

E. WPT and data receiver

Wireless power transfer (WPT) techniques are essential for
powering implantable biomedical devices, providing numerous
benefits such as the elimination of wires, enhanced device
longevity, and a decreased risk of infection. Various methods
have been proposed for this purpose. Inductive coupling [29]
is a well-established and widely-used method that achieves
moderate power transfer efficiency with a relatively simple
design and implementation. However, it has a limited range,
typically a few millimeters to centimeters, and its performance
is sensitive to coil misalignment. Magnetic resonance coupling
[30] offers a longer range compared to inductive coupling (up
to several times the coil size), higher power transfer efficiency,
and increased tolerance to coil distance variations. However,
it requires a more complex design and implementation, and
larger coils for efficient power transfer. Furthermore, the strong
electromagnetic interference it generates could potentially af-
fect other electronic devices. The capacitive coupling method
[31], while characterized by a simple design and low cost,
is limited by its range, low power transfer efficiency, and
sensitivity to tissue and environmental changes.

In the context of peripheral nerve implants, ultrasonic power
transfer [32] has emerged as a particularly promising candi-
date. This method can achieve high power transfer efficiency
and superior delivery depth with minimal impact from the
presence of biological tissue. Moreover, it does not generate

Fig. 11. The PNS neural interface wireless power experimental measure-
ments. (a) Power RX architecture. (b) Wireless power measurement setup
components. (c) Experimental setup of ultrasound wireless power transfer
through bovine muscle.

electromagnetic interference, making it compatible with the
sensitive electronic components used in such implants. Despite
its sensitivity to misalignment, the benefits of ultrasonic power
transfer render it highly suitable for powering peripheral nerve
implantable devices. Specifically, we chose ultrasonic power-
ing over inductive powering because of its deeper penetration
capabilities and absence of electromagnetic interference, the
factors we believe are crucial for the successful application in
peripheral nerve implants. Consequently, the proposed PNS
neural interface has been designed to ensure compatibility
with ultrasonic energy harvesters, facilitating wireless energy
transmission through the skin. Ultrasound power is transmitted
from the wearable interrogator, and the power waveform
contains serialized commands modulated in the amplitude.
In the current study, the experiments were conducted on an
anesthetized rat as the test subject. Due to the anesthetization,
the issue of angular misalignment resulting from natural
movements was not applicable. Therefore, this study does not
account for potential effects of angular misalignment, a factor
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Fig. 12. (a) Data receiver demodulating a 1.2 MHz PRBS-modulated ASK
power waveform with a 5% modulation index. (b) Power conversion efficiency
versus output power for rectifier and LDO circuits. (c) Power delivered ex vivo
to varying load resistances at a 6 mm distance through cow muscle tissue. (d)
Power breakdown of the proposed design.

that should be considered in future research involving mobile
or conscious subjects.

As illustrated in Fig. 11(a), the on-chip ultrasound power
receiver is interconnected with the power and data-receiving
circuits. The power path comprises a full-wave bulk-biased
passive rectifier, accompanied by a narrowband low-pass filter,
followed by a low-dropout (LDO) voltage regulator bank.
The data receiver receives amplitude-shift keying (ASK)-
modulated data and subsequently forwards it to another low-
pass filter. This filter’s cutoff frequency is determined based
on the data rate of the transmitted ASK signal, ensuring
that it effectively permits the desired frequency components
associated with the data to pass while attenuating undesired
high-frequency components. Once the low-pass filter has been
applied to the received ASK signal, the resulting output is a
smoothed rendition of the original baseband data. This filtered
signal is then processed by a decision-making circuit, such
as a Schmitt trigger that is used in this work, to recover
the binary data transmitted via the ASK modulation scheme.
This approach enhances the overall performance and reliability
of the PNS neural interface, ensuring efficient wireless com-

munication and energy harvesting capabilities for implantable
biomedical devices.

Figure 11(b) presents the wireless power measurement
setup, consisting of a function generator and a power amplifier
responsible for generating the pseudo-random binary sequence
(PRBS) data and power essential for wireless ultrasound
powering. A coupler is employed to measure the power
directed into the matching network and ultrasound transmitter
(TX) transducer. The ultrasound receiver (RX) transducer is
followed by the matching network, which receives data and
power to be fed into the rectifier for rectification. Subse-
quently, the rectified signals are supplied to the LDO voltage
regulator and data demodulator for voltage regulation and
data decoding, respectively. The selection and arrangement of
these components have been planned to ensure the accuracy
and reliability of the measurements conducted in the wireless
power transmission system.

Figure 11(c) displays detailed images of the experimental
setup. In this configuration, the chip is wire-bonded directly
onto the PCB using a chip-on-board technique to minimize
parasitic effects. The received ultrasound power is captured
by a 4mm x 4mm ultrasound RX and subsequently directed
to an on-chip power rectifier for both powering and data
transmission. The ultrasound power is transmitted through a
4mm-thick layer of bovine muscle.

The TX component is designed to be in direct contact with
the skin, eliminating the air gap and thereby minimizing power
reflection issues. This means that the distance between the TX
and RX components is solely determined by the depth at which
the RX is implanted.

Figure 12(a) showcases the successful demodulation of a
PRBS-modulated ASK power waveform at a frequency of 1.2
MHz, with a modulation index of 5%. This outcome signifies
the efficacy of the data receiver in processing the ASK power
waveform.

Ultrasound power transfer systems, typically achieving ef-
ficiencies in the realm of tens of percent, underscore the
critical role of conversion efficiency in wireless power transfer.
Figure 12(b) provides the measurement result of the power
conversion efficiency in relation to the output power for the
power-shaping circuits, which include the rectifier and LDO.
These circuits demonstrate a power conversion efficiency of
70% at the nominal load of 480 µW, which corresponds to
the system’s nominal power consumption in the absence of
active stimulation.

Figure 12(c) exhibits the amount of power delivered to
the load with varying resistance levels at a distance of 6
mm through cow muscle tissue positioned between the power
transmitter (TX) and the power receiver (RX). This illustration
emphasizes the effectiveness of the power management unit
and the data receiver in maintaining consistent power delivery
and data reception under challenging conditions, such as the
presence of biological tissues.

Lastly, a pie chart detailing the power distribution among
various components is included in Fig. 12(d). The total power
requirement for the implant to be functional is 480µW. This
is broken down as follows: (1) 64 analog frontends - 5.2µW
each, (2) transmitter - 27.63µW at a 20 Mbps operation
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Fig. 13. (a-c) In vivo rat sciatic nerve recordings experimental results showcasing naturally evoked compound action potentials nCAPs resulted from three
distinct hind paw stimuli: (a) dorsiflexion, (b) plantarflexion, and (c) heel prick, along with their corresponding spatiotemporal signatures, used as inputs to
the CNN classifier. (d) The corresponding time-aligned mechanical displacement/stimulus rhythm. (e) A simplified architecture of the CNN classifier shown
in Fig. 9(a, yellow). (f) Classifier performance: 86.7% accuracy and 85.6% F-1 score obtained from one rodent. (The classification results in (f) are from a
different data set, not from recordings in (a), (b), and (c)).

frequency, (3) LDO banks and other - 119µW, (note: This
power analysis does not include the stimulator, which is only
activated occasionally, or the optional RISC-V processor for
on-chip data processing).

In summary, the comprehensive wireless power measure-
ment results presented herein serve to underscore the ro-
bustness and efficiency of the power management unit and
data receiver within the PNS neural interface system. These
components have been designed and optimized to ensure
reliable performance, even in the presence of biological tissues
and varying load conditions, making them essential to the
overall functionality of the system.

V. IN VIVO EXPERIMENTAL RESULTS

The previous section provided a comprehensive discussion
on the implementation details of the PNS neural interface
integrated circuit (IC), including key measurement results for
each individual block. This section focuses on the in vivo
experimental results obtained from a Wistar rat during the
course of this study.

The IC was validated in vivo by conducting sciatic nerve
recordings from an anesthetized rat. A flexible, high-density
8x8-contact polyimide cuff electrode array was implanted
over the sciatic nerve and connected to the IC. Figure 13
(a-c) displays the recordings obtained by the IC, capturing

compound action potentials naturally evoked by three distinct
rat paw movements: dorsiflexion, plantarflexion, and heel
prick, as displayed in Fig. 13(a, middle), (b, middle), and
(c, middle), respectively. These movements engage different
neural pathways, underscoring the versatility and sensitivity
of the IC in detecting diverse nerve activities. The recordings
are subsequently passed from the IC to the neural pathway
classifier, implemented in the wearable digital interrogator.

Spatiotemporal signatures derived from the recordings of
the cuff electrode array serve as inputs for the convolutional
neural network (CNN) classifier. These signatures include
dorsiflexion, plantarflexion, and heel prick spatiotemporal sig-
natures, as shown in Fig. 13(a, right), (b, right), and (c,
right), respectively. The spatiotemporal signatures are fed into
the aforementioned CNN classifier, as depicted in Fig. 13(e).
Finally, the classifier identifies the specific neural pathway cor-
responding to each sample, showcasing its ability to accurately
and reliably classify the input data.

As demonstrated in Fig. 13(f), the classifier exhibits an
accuracy of 86.7% and an F1 score of 85.6% from a 3-
fold dataset derived from a single animal. The experimental
results indicate that the compound action potentials associated
with distinct neural pathways are effectively captured by
the IC, enabling the classifier to differentiate between these
pathways based on the recorded nerve activity. This differen-
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Fig. 14. Experimental in vivo validation of fascicle-selective stimulation in a rat using TIS, demonstrating the capability of the system to activate distinct
neural pathways by choosing specific electrode pairs. This figure depicts positions of the four different rat’s hind paw movement types during pre-stimulation,
stimulation, and post-stimulation phases, respectively.

tiation capability is crucial for identifying and distinguishing
the neural pathways responsible for specific movements or
actions, enhancing the potential applications of the PNS neural
interface system.

In the context of implantable PNS interfaces, the choice of
classifier—whether external or on-chip—significantly impacts
the overall power consumption. Although on-chip classifiers
offer the advantage of localized data processing, they require
a substantial power budget comparable to using our low-power
transmitter (27uW) to send all the data off-chip. We refer to
the energy-efficient neural classifiers presented in [33], [34]
for comparative benchmarks.

In this work, we focus on utilizing an external classifier
due to the comparable power consumption and the scope of
our study. The employment of an external classifier could
introduce latency concerns, such as delays due to wireless
transmission and external processing. To provide a clearer
understanding, preliminary tests indicate that the wireless link
latency is less than 1 ms, while the classification latency
is around 10 ms. These figures suggest that the system is
capable of real-time performance within acceptable ranges for
many PNS applications. Nevertheless, further investigations on
latency considerations will be the subject of future work.

Figure 14 displays the results of the selective stimulation
achieved during in vivo experiments, demonstrating the ca-
pability of the system to activate distinct neural pathways by
choosing specific electrode pairs through temporal interference
stimulation (TIS). The first row in Figure 14 exhibits the
four induced movement classes. The second row illustrates
the corresponding stimulation electrode locations, while the
third row presents the stick diagrams of the rat’s hind paw

movement direction during the pre-stimulation, stimulation,
and post-stimulation phases. Rows four, five, and six depict
the rat’s hind paw location along with the stick diagrams dur-
ing pre-stimulation, stimulation, and post-stimulation phases,
respectively.

In the in-vivo experiments, the stimulation current amplitude
was set to approximately 2.4 mA. The blue electrode pair
was set to a stimulation current frequency of 2 kHz, while
the red electrode pair operated at a frequency of 2.005 kHz.
This resulted in a beat frequency of 5 Hz, leading to observ-
able movement in the rat’s hind paw. This selection process
elicits a variety of movements, including dorsiflexion, plantar
flexion, and distinct finger movements such as contraction
and extension. The process of selecting electrode pairs for
stimulation was carried out through a trial-and-error approach.
Following the stimulation, the rat’s hind paw demonstrates
differentiated movement, indicating the effectiveness of the
system in modulating neural activity. The presented results
highlight the potential of the proposed PNS neural interface
for facilitating precise stimulation and manipulation of neural
pathways.

The in vivo experimental outcomes highlight the successful
implementation and integration of the IC with a flexible, high-
density polyimide cuff electrode array for selective record-
ing of sciatic nerve activity. The IC’s capability to detect
compound action potentials from various neural pathways
during distinct limb movements emphasizes its versatility and
sensitivity in capturing a diverse range of nerve activities.
Furthermore, the neural pathway classifier, deployed within
the wearable digital interrogator, demonstrates exceptional
accuracy and reliability in differentiating between neural path-
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ways based on the recorded nerve activity. The stimulation
results further substantiate the system’s selective stimulation
capabilities.

This work emphasizes the potential of the PNS neural
interface system to provide accurate, reliable, and efficient
monitoring and control of neural activity in a variety of
biomedical applications. The successful development and val-
idation of a PNS interface capable of selectively stimulating
and recording neural activity in vivo not only lays the founda-
tion for future research and applications in the field of fascicle-
selective neural interfaces but also opens up possibilities for
advancements in neuroprosthetics, neuromodulation and other
areas of neuroscience.

Fig. 15. (a) Die micrograph of the 65nm CMOS chip (2.6x2.6 mm2). (b-c)
PNS interface microsystem form factor illustration: (b) top view showing
a rigid-flex PCB with wire-bonded die, an energy storage capacitor, and
64-contact electrode array; and (c) bottom view, showing ultrasound piezo
receiver and an example of cuff electrode placement on a rat sciatic nerve.

VI. COMPARISON TABLE AND SUMMARY

The die micrograph, displayed in Fig. 15(a), demonstrates
that the chip fabricated utilizing a 65nm CMOS process node
encompasses an active area of 2.6×2.6 mm2. For the purpose
of demonstrating the achievable form factor, our latest active
PNS neural interface prototype has been realized through a
rigid-flex printed circuit board (PCB) design. The rigid portion
of the PCB houses the wire-bonded die and an energy storage
capacitor, which is responsible for delivering the stimulation
charge, as illustrated in Fig. 15(b). Conversely, the flexible
segment accommodates the 64-contact gold-plated electrodes,
which interface directly with the nerve. A bottom view of the
PNS interface, depicted in Fig. 15(c), exhibits the ultrasound
piezo receiver and the cuff electrode wrapped around a rat’s
sciatic nerve.

When benchmarked against recently published PNS inter-
faces as described in Table I, the current work offers several
notable advantages. Having the wireless powering capability,
it provides the highest number of recording and stimulation
channels while consuming nominal power of 480µW and
occupying an area of merely 5 mm2. Furthermore, it is one
of the few PNS interfaces that feature data transmission
capabilities, boasting an energy efficiency of 1.38 pJ/bit.
Moreover, this work presents one of the few PNS interfaces
with stimulation capabilities, delivering a larger current range
and voltage compliance compared to previous studies. In terms

of performance metrics, it surpasses other front-ends from
recent PNS research by achieving the smallest noise efficiency
factor of 3.93 (including the ADC power) and attaining the
largest Schreier figure of merit of 173.4 dB.

In summary, this study introduces an advanced PNS neural
interface that stands out among the existing solutions due to
several innovative design elements and functionalities. Firstly,
it employs a minimally invasive approach, mitigating the risk
of nerve damage or tissue inflammation that may arise from
more invasive techniques. This feature is crucial in ensuring
patient safety and comfort during long-term therapy. Secondly,
the fully-wireless operation capability of the proposed inter-
face reduces the overall size of the device and eliminates the
need for periodic battery replacements, further enhancing its
practicality for chronic use.

Another aspect of the proposed PNS neural interface is
the incorporation of a wearable interrogator with integrated
machine-learning capabilities. This feature could allow the
device to adapt to the patient’s specific needs and optimize
the neuromodulation therapy accordingly, thereby improving
the efficacy of the treatment.

In terms of performance metrics, the proposed PNS neural
interface demonstrates superiority over existing solutions in
several key areas. For instance, the fine deep fascicle selec-
tivity for recording and stimulation achieved by the device is
unparalleled, as it does not require nerve penetration or com-
pression. This aspect of the design ensures the preservation
of nerve integrity while enabling precise targeting of neural
pathways.

Moreover, the in vivo experiments conducted on rat sciatic
nerves provide valuable evidence of the interface’s ability to
selectively stimulate and record neural fascicles. This substan-
tiates its potential for a wide array of applications, particularly
in adaptive therapies for neuromodulation in peripheral nerves.
These applications include alternative treatment options for
diagnosing and treating neurological disorders or restoring and
repairing neural functions.

VII. CONCLUSION

This study presents an advancement in the field of PNS
neural interfaces by developing a high-performance IC with for
fascicle-selective recording and stimulation of neural activity.
The successful implementation and validation of the IC, com-
bined with the robust classifier’s performance in identifying
specific neural pathways, demonstrates the potential of this
system to be employed in various biomedical applications, and
ultimately in improving the understanding and treatment of
neurological disorders such as intractable epilepsy and motor
and sensory deficits, and enhancing the quality of life for such
patients. Moreover, the in vivo experimental results provided
evidence of the system’s effectiveness in modulating neural
activity by selectively stimulating distinct neural pathways
using temporal interference stimulation.

Future perspectives for this research include the exploration
of additional applications for the PNS neural interface system,
such as neuroprosthetics, closed-loop neuromodulation, and
other areas of neuroscience and neurology. Further optimiza-
tion of the IC and the classifier, as well as the development

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3332258

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF XXXX, VOL. XXX, NO. XXX, XXX 2023 17

TABLE I
TABLE OF COMPARISON

THIS WORK [18] [35] [36] [37]
SYSTEM

WIRELESS POWER YES YES NO YES NO
TECHNOLOGY 65 130 180 180 40

SUPPLY VOLTAGE (V) 0.4 - 2.5 0.5 - 1.6 1.8 1.2/1.8 1.2
TOTAL POWER (µW) 480 810 418.14∗ 2300 17

AREA (mm2) 5.00 7.02 1.65 7.82 -
No. REC / STIM CH. 64 / 64 64 / 1 1 / N/A 10 / N/A 1 / N/A

ANALOG FRONT-END

AREA/CH. (mm2) 0.02 0.01 1.65 - 0.014
POWER/CH. (µW) 5.2 0.14 418.14∗ 37.6 17

IRN (µVRMS) 2.2 24.7 - 1.9 2.26∗
BANDWIDTH (kHz) 2.5 10 1 5.5 5

NEF (W/O ADC) 2.55 N/A N/A 4 N/A
NEF (WITH ADC) 3.93 4.7 11.2 N/A 4.71

ZIN (GΩ) >1 0.1 - - 0.07
CMRR (dB) 69 - 140 - -

DYNAMIC RANGE (mVPP) 50 25 60 - 8
SNDR (dB) 84.2 49.92∗ - 48.76∗ 61.85
FoM S (dB) 71.5 27 3309∗ - 1680

FoM W (fJ/Conv.Step) 173.4 165.1 159.7∗ - 146.5

DATA TRANSMITTER

POWER (µW) 27.63△ 330∗△ N/A N/A N/A
DATA RATE (Mbps) 20 - N/A 3 N/A

ENERGY EFFICIENCY (pJ/bit) 1.38 - N/A - N/A

STIMULATOR

DYNAMIC RANGE (µA) 0 - 2000 5-200 N/A N/A N/A
COMPLIANCE VOLTAGE (V) 3.3 1.8 N/A N/A N/A

WIRELESS POWER TRANSFER

POWER CONVERSION EFFICIENCY 70% N/A N/A N/A N/A
∗: ESTIMATED. N/A: NOT APPLICABLE. -: NOT AVAILABLE. △: AT MAXIMUM DATA RATE.
FoMS(dB) = SNDR+ 10log10(BW/POWER).
FoMW(fJ/Conv.Step) = POWER/(2ENOB × 2BW).

of advanced algorithms for processing and interpreting neural
data, could lead to enhanced performance and more sophisti-
cated control of neural activity. In addition, the integration of
advanced machine learning techniques, such as deep learning
or reinforcement learning, could potentially enable the devel-
opment of adaptive neural interfaces that can learn and adapt
to the user’s specific needs and requirements.

The translation of this technology into clinical practice
would require extensive testing and validation in larger an-
imal models and human subjects while ensuring the safety,
biocompatibility, and long-term stability of the system. The
development of miniaturized, implantable, and wireless sys-
tems would further facilitate the widespread adoption of this
technology in various medical and research settings.

In summary, the successful development and validation of
the PNS neural interface system in this study lays a solid
foundation for future research and applications in the field of
neural interfaces. The potential impact of this technology on
the treatment and management of neurological disorders, as
well as on the overall quality of life for affected patients, high-
lights the importance of continued research and development
in this area.

APPENDIX

IN-VIVO EXPERIMENT SETUP

Fig. 16. Experimental setup during in vivo recording and stimulation.
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In response to the queries about device dimensions and
invasiveness, we would like to highlight that the implantable
chip’s weight is less than 100g. Further details regarding the
surgical procedure for implantation are elaborated in Fig. 16.
Regarding the external wearable device for ultrasound TX, we
anticipate that its dimensions will be within a 10cm x 10cm
size range. Moreover, the cumulative power consumption of
each component, when integrated, is expected to be below
5mW. We would like to emphasize that this manuscript
primarily focuses on chip-level discussions; comprehensive
integration of the wearable unit is an objective of our future
work.
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G. Buzsáki, et al., “Direct effects of transcranial electric
stimulation on brain circuits in rats and humans,” Nature
communications, vol. 9, no. 1, pp. 1–17, 2018.

[21] N. Grossman, D. Bono, N. Dedic, S. Kodandaramaiah, A.
Rudenko, H.-J. Suk, A. Cassara, E. Neufeld, N. Kuster, L.-H.
Tsai, A. Pascual-Leone, and E. Boyden, “Noninvasive deep
brain stimulation via temporally interfering electric fields,”
Cell, vol. 169, 1029–1041.e16, Jun. 2017. DOI: 10 .1016 / j .
cell.2017.05.024.

[22] G. O’Leary, J. Xu, L. Long, J. S. Filho, C. Tejeiro, M.
ElAnsary, C. Tang, H. Moradi, P. Shah, T. A. Valiante,
and R. Genov, “A neuromorphic multiplier-less bit-serial
weight-memory-optimized 1024-tree brain-state classifier and
neuromodulation soc with an 8-channel noise-shaping SAR
ADC array,” 2020 IEEE International Solid- State Circuits
Conference - (ISSCC), 2020, pp. 402–404. DOI: 10 . 1109 /
ISSCC19947.2020.9062962.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3332258

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF XXXX, VOL. XXX, NO. XXX, XXX 2023 19

[23] A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M. Pazhouhandeh,
S. Ecoffey, Y. Beilliard, R. Genov, and D. Drouin, “In-
memory vector-matrix multiplication in monolithic comple-
mentary metal–oxide–semiconductor-memristor integrated cir-
cuits: Design choices, challenges, and perspectives,” Advanced
Intelligent Systems, vol. 2, p. 2 000 115, Aug. 2020. DOI: 10.
1002/aisy.202000115.

[24] T. Liu, A. Amirsoleimani, J. Xu, F. Alibart, Y. Beilliard,
S. Ecoffey, D. Drouin, and R. Genov, “Codex: Stochastic
encoding method to relax resistive crossbar accelerator design
requirements,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, Mar. 2022. DOI: 10.1109/TCSII.2022.
3157789.

[25] H. You, A. Amirsoleimani, J. Xu, M. Rahimi Azghadi, and
R. Genov, “A subranging nonuniform sampling memristive
neural network-based analog-to-digital converter,” Memories -
Materials, Devices, Circuits and Systems, vol. 4, p. 100 038,
Mar. 2023. DOI: 10.1016/j.memori.2023.100038.

[26] R. Koh, M. Balas, A. Nachman, and J. Zariffa, “Selective
peripheral nerve recordings from nerve cuff electrodes using
convolutional neural networks,” Journal of Neural Engineer-
ing, vol. 17, Oct. 2019. DOI: 10.1088/1741-2552/ab4ac4.

[27] Y. E. Hwang, R. Genov, and J. Zariffa, “Resource-efficient
neural network architectures for classifying nerve cuff record-
ings on implantable devices,” bioRxiv, 2022. DOI: 10.1101/
2022.10.05.510983. eprint: https://www.biorxiv.org/content/
early / 2022 / 10 / 07 / 2022 . 10 . 05 . 510983 . full . pdf. [Online].
Available: https://www.biorxiv.org/content/early/2022/10/07/
2022.10.05.510983.

[28] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, pp. 1–1,
May 2016. DOI: 10.1109/TPAMI.2016.2572683.

[29] N. Soltani, M. ElAnsary, J. Xu, J. Salesfilho, and R. Genov,
“Safety-optimized inductive powering of implantable medical
devices: Tutorial and comprehensive design guide,” IEEE
Transactions on Biomedical Circuits and Systems, vol. PP,
pp. 1–1, Nov. 2021. DOI: 10.1109/TBCAS.2021.3125618.

[30] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein,
“Magnetic resonant coupling as a potential means for wireless
power transfer to multiple small receivers,” IEEE Transactions
on Power Electronics, vol. 24, no. 7, pp. 1819–1825, 2009.
DOI: 10.1109/TPEL.2009.2017195.

[31] J. Dai and D. C. Ludois, “A survey of wireless power transfer
and a critical comparison of inductive and capacitive coupling
for small gap applications,” IEEE Transactions on Power
Electronics, vol. 30, no. 11, pp. 6017–6029, 2015. DOI: 10.
1109/TPEL.2015.2415253.

[32] G. Ottman, H. Hofmann, A. Bhatt, and G. Lesieutre, “Adaptive
piezoelectric energy harvesting circuit for wireless remote
power supply,” IEEE Transactions on Power Electronics,
vol. 17, no. 5, pp. 669–676, 2002. DOI: 10.1109/TPEL.2002.
802194.

[33] A. Chua, M. I. Jordan, and R. Muller, “A 1.5nj/cls unsuper-
vised online learning classifier for seizure detection,” 2021
Symposium on VLSI Circuits, 2021, pp. 1–2. DOI: 10.23919/
VLSICircuits52068.2021.9492392.

[34] U. Shin, L. Somappa, C. Ding, Y. Vyza, B. Zhu, A. Trouillet,
S. P. Lacour, and M. Shoaran, “A 256-channel 0.227µj/class
versatile brain activity classification and closed-loop neuro-
modulation soc with 0.004mm2-1.51 µw/channel fast-settling
highly multiplexed mixed-signal front-end,” 2022 IEEE Inter-
national Solid- State Circuits Conference (ISSCC), vol. 65,
2022, pp. 338–340. DOI: 10.1109/ISSCC42614.2022.9731776.

[35] C. Lim, Y. Choi, Y. Park, J. Song, S.-S. Ahn, S. Park, and
C. Kim, “A capacitively coupled ct-∆Σm with chopping
artifacts rejection for sensor readout ics,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. PP, pp. 1–12,
Jun. 2021. DOI: 10.1109/TCSI.2021.3084350.

[36] K. Ng, C. Yuan, A. Rusly, A.-T. Do, B. Zhao, S.-C. Liu, W.
Peh, X. Thow, K. Voges, S. Lee, G. Gammad, K.-W. Leong, J.
Ho, S. Bossi, G. Taverni, A. Cutrone, S.-C. Yen, and Y. P. Xu,
“A wireless multi-channel peripheral nerve signal acquisition
system-on-chip,” IEEE Journal of Solid-State Circuits, vol. PP,
pp. 1–15, May 2019. DOI: 10.1109/JSSC.2019.2909158.

[37] C. C. Tu, Y.-K. Wang, and T.-H. Lin, “A low-noise area-
efficient chopped vco-based ctdsm for sensor applications in
40-nm cmos,” IEEE Journal of Solid-State Circuits, vol. PP,
pp. 1–10, Jul. 2017. DOI: 10.1109/JSSC.2017.2724025.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3332258

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF XXXX, VOL. XXX, NO. XXX, XXX 2023 20

Jianxiong Xu (Student Member, IEEE) received his
B.E. in Optical Communication from the University
of Electronics Science and Technology of China,
Sichuan, China, in 2015, and his M.E. in Electronics
from the University of Toronto, Toronto, Canada,
in 2018. He is currently pursuing a Ph.D. at the
University of Toronto, focusing on low-power circuit
design for biomedical applications.

Jose Sales Filho (Graduate Student Member, IEEE)
received his B.Eng. (2014) and M.A.Sc. (2016) in
Electrical Engineering from the Universidade Fed-
eral do Rio Grande do Norte, Brazil. In 2017 he
was a research associate with the King Abdullah
University of Science and Technology, Saudi Arabia.
He is currently pursuing his Ph.D. at the University
of Toronto, Canada. His research interests include
ultra low-power wireless circuits for neural inter-
faces, readout circuits multimodal sensory systems
and wireless power transfer.

Liam Long received the B.Eng. degree in electrical
and electronics engineering from the Memorial Uni-
versity of Newfoundland, St. John’s, NL, Canada, in
2018. He is currently pursuing the M.A.Sc. degree
with the Intelligent Sensory Microsystems Labora-
tory, University of Toronto, Toronto, ON, Canada,
with a research focus on the development of SoCs
for neuro-electronic interfaces.

Camilo Tejeiro received the B.Sc. degree in electri-
cal and electronics engineering from the University
of Washington, Seattle, WA, USA, in 2013, and
the M.A.Sc. degree from the University of Toronto,
Toronto, ON, Canada, in 2020. He is currently an
Analog and Mixed-Signal Design Engineer with
Synopsys, Toronto.

Gerard O’Leary received the B.Eng. degree at the
University of Galway, and the M.A.Sc. and Ph.D.
degrees at the University of Toronto in electrical
and computer engineering. He has held engineering
positions at Analog Devices, The European Space
Agency, and ARM. His research is at the interface
between biological and electronic systems, creating
low-power integrated circuits which utilize signal
processing and machine learning techniques to clas-
sify and control activity using responsive stimula-
tion. He is the recipient of the IEEE Solid-State

Circuits Society (SSCS) Predoctoral Achievement Award. He is currently the
co-founder and CTO of NerveX Neurotechnologies, Inc.

Yu Huang received the B.Sc. degree from Dalian
University of Technology, China, in 2019, and the
M.Sc. degree (cum lauda) from Delft University
of Technology in the Netherlands in 2021, both in
electrical engineering. From 2020 to 2021, He was a
research student with imec Eindhoven, The Nether-
lands. Currently he is pursing the Ph.D. degree with
the University of Toronto, Canada, with research
focus on low-power ICs for biomedical applications.

Mohammad Abdolrazzaghi (Member, IEEE) re-
ceived the B.Sc. degree in electrical and computer
engineering from the Iran University of Science and
Technology, Tehran, Iran, in 2009, and the M.Sc.
degree in electrical and computer engineering from
the University of Alberta, Edmonton, AB, Canada,
in 2017. He received the Alberta Innovates Technol-
ogy Futures (AITF) Scholarship from the University
of Alberta in 2015 and the CMC Microsystem’s
National Research Council Industrial Collaboration
Award (First Place) in 2015 and (Second Place)

in 2017. In 2017, he was a recipient of the Graduate Student Teaching
Award from the University of Alberta. He has been the Electromagnetic
Modeling Lead with Phase Advances Sensors Corporation, Edmonton. He
is currently pursuing the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON, Canada.
His current research interests include analog circuit design, wireless power
transfer, RF design, metamaterial, biosensors, and machine learning. He
received the Ontario Graduate Students Scholarship (2021) and Postgraduate
Scholarship-Doctoral (PGS D) from NSERC (2022).

Chenxi Tang received the B.Eng. degree in elec-
trical, electronics, and computer engineering from
the University of Birmingham, Birmingham, U.K., in
July 2018, the B.Eng. degree in electrical, electron-
ics, and computer engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in June 2018, and the M.Eng. degree in elec-
trical and computer engineering from the University
of Toronto, Toronto, ON, Canada, in June 2020. He
was an M.Eng. Student with the Intelligent Sensory
Microsystems Laboratory, University of Toronto,

from 2019 to 2020, where he worked on the development and characterization
of neural interface SoCs. He is currently an Applications Engineer with
Rambus, Toronto.

Yuan Sui (Undergraduate Student Member, IEEE) is
currently pursuing a B.E. in Electrical and Computer
Engineering at the University of Toronto.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3332258

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF XXXX, VOL. XXX, NO. XXX, XXX 2023 21

Hao You (Undergraduate Student member, IEEE)
is currently pursuing a B.E. at the University of
Toronto, focusing on ADC design and memristor
applications.

Xilin Liu (Senior Member, IEEE) obtained his
Ph.D. degree from the University of Pennsylvania,
Philadelphia, PA, USA, in 2017. He is currently
an Assistant Professor in the Edward S. Rogers Sr.
Department of Electrical and Computer Engineering
(ECE) at the University of Toronto, Toronto, ON,
Canada. He is also an affiliated scientist at the
University Health Network (UHN), Toronto, ON,
Canada. His research interests include analog and
mixed-signal IC design for biomedical circuits and
systems, especially for neural interfacing and neu-

romodulation. Before joining the University of Toronto, he held industrial
positions at Qualcomm Inc., San Diego, CA, USA, where he conducted
research and development of high-performance mixed-signal circuits for
cellular communication. He led and contributed to the IPs that have been
integrated into products in high-volume production. He was a visiting scholar
at Princeton University, Princeton, NJ, USA, in 2014.

Dr. Liu received the Best Student Paper Award and the Best Track Award at
the 2017 International Symposium on Circuits and Systems (ISCAS), the Best
Paper Award (1st place) at the 2015 IEEE Biomedical Circuits and Systems
Conference (BioCAS), the Best Track Award at the 2014 ISCAS, the student
research preview (SRP) award at the 2014 IEEE International Solid-State
Circuits Conference (ISSCC). His team was a finalist in the 2018 BCI Award
and the 2022 BioCAS Grand Challenge. He also received the IEEE Solid-
State Circuits Society (SSCS) Pre-doctoral Achievement Award at the 2016
ISSCC.

Dr. Liu currently serves as an Associate Editor of the IEEE Transactions of
Biomedical Circuits and Systems (TBioCAS) and the IEEE Transactions on
Circuits and Systems II: Express Briefs (TCAS-II). He was the local co-chair
of BioCAS 2023 in Toronto, Canada. He is a committee member of several
CASS and SSCS conferences and an SRP committee member of ISSCC.
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